Steiner pentagon covering designs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steiner pentagon covering designs

Let Kn denote the complete undirected graph on n vertices. A Steiner pentagon covering design (SPCD) of order n is a pair (Kn;B), where B is a collection of c(n)= n=5 n−1=2 pentagons from Kn such that any two vertices are joined by a path of length 1 in at least one pentagon of B, and also by a path of length 2 in at least one pentagon of B. The existence of SPCDs is investigated. The main appr...

متن کامل

q-Analogs for Steiner Systems and Covering Designs

The q-analogs of basic designs are discussed. It is proved that the existence of any unknown Steiner structures, the q-analogs of Steiner systems, implies the existence of unknown Steiner systems. Optimal q-analogs covering designs are presented. Some lower and upper bounds on the sizes of q-analogs covering designs are proved.

متن کامل

On q-analogs of Steiner systems and covering designs

The q-analogs of covering designs, Steiner systems, and Turán designs are studied. It is shown that q-covering designs and q-Turán designs are dual notions. A strong necessary condition for the existence of Steiner structures (the q-analogs of Steiner systems) over F2 is given. No Steiner structures of strength 2 or more are currently known, and our condition shows that their existence would im...

متن کامل

Halving Steiner 2-designs

A Steiner 2-design S(2,k,v) is said to be halvable if the block set can be partitioned into two isomorphic sets. This is equivalent to an edge-disjoint decomposition of a self-complementary graph G on v vertices into Kks. The obvious necessary condition of those orders v for which there exists a halvable S(2,k,v) is that v admits the existence of an S(2,k,v) with an even number of blocks. In th...

متن کامل

On the Covering Steiner Problem

The Covering Steiner problem is a common generalization of the k-MST and Group Steiner problems. An instance of the Covering Steiner problem consists of an undirected graph with edge-costs, and some subsets of vertices called groups, with each group being equipped with a non-negative integer value (called its requirement); the problem is to find a minimum-cost tree which spans at least the requ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2001

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(00)00302-2